L'intelligence artificielle a déjà prouvé qu'elle pouvait être utile pour analyser de l'imagerie médicale, et elle a même montré qu'elle pouvait passer avec succès les examens d'étudiants en médecine.
C'est à présent au tour d'un nouvel outil fondé sur l'IA de démontrer sa capacité à lire les bilans dressés par les médecins et à anticiper avec précision les risques de décès, de réadmission à l'hôpital et autres complications possibles.
Créé par une équipe de la faculté de médecine de Langone de New York, la Grossman School of Medicine, le logiciel est aujourd'hui testé dans plusieurs hôpitaux partenaires de l'université, dans l'objectif d'en faire à l'avenir une pratique courante dans le milieu médical.
Une étude sur son possible intérêt a été publiée mercredi dans la revue scientifique Nature.
Ces observations comprenaient les rapports écrits des médecins, les notes sur l'évolution de l'état des patients, les radios et l'imagerie médicale, ou encore les recommandations remises aux patients à leur sortie de l'hôpital, le tout formant un corpus de 4,1 milliards de mots.
L'un des principaux défis pour le logiciel était de réussir à interpréter le langage employé par les médecins, qui varie grandement selon les professionnels, notamment dans les abréviations utilisées.
Ils ont aussi testé l'outil en conditions réelles, en l'entraînant notamment à analyser des rapports issus d'un hôpital à Manhattan puis en comparant les résultats à ceux d'un hôpital de Brooklyn, à la patientèle différente.
En se penchant sur ce qu'il est advenu des patients, les chercheurs ont réussi à mesurer le nombre de fois où les prédictions du logiciel se sont révélées exactes.
Pas un substitut
Des résultats qui ont dépassé les prédictions de la plupart des médecins, tout comme celles des modèles informatiques non fondés sur l'IA actuellement utilisés.
Le logiciel a aussi prédit avec succès à 79% la durée d'hospitalisation des patients, à 87% les cas dans lesquels les patients se voyaient refuser un remboursement des soins par leur assurance, et à 89% les cas dans lesquels le patient souffrait de pathologies additionnelles.